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The following paper describes a molecular orbital calculation of the Wolfsberg-Helmholz
type. However, in contrast to the usual empirical determination of the Hy; integrals, these
integrals are here computed from the wave functions of the free ions. The calculation is
performed on Cu in a tetrahedral, square planar and octahedral environment of Cl, the results
being subsequently compared.

Die folgende Arbeit bringt eine M. O. Berechnung vom Typ Wolfsberg-Helmholz von
Kupfer-Chlorid-Komplexen mit tetraedrischer, quadratisch-ebener und oktaedrischer An-
ordnung der Liganden. Die Ergebnisse werden miteinander verglichen. Abweichend vom
iiblichen Schema wurden die Hi-Integrale mittels der Wellenfunktion des freien Ions be-
rechnet.

Un caleul O.M. du type Wolfsberg-Helmholz est effectué. Les intégrales Hi; y sont déter-
minés des fonctions d’onde des ions libres, contrairement au procédé empirique usuel. Cu est
traité en coordination tétraédrique, quadratique et octaédrique de Cl; les résultats sont
comparés.

Introduction

During recent years, molecular orbital calculations have been performed in
increasing numbers on complicated molecules as for instance the complexes of the
transition metal ions. However, it also becomes increasingly clear that the diffi-
culties encountered are quite considerable.

In the simple molecular orbital theory it is assumed that the orbital of an
electron in a molecule can be described by a linear combination of the orbitals of
the electrons in the free atoms or ions:

v =2 Ok @ - 1)
k

By choosing the coefficients Cy in such a way that the average energy of the
system is minimised, the problem is reduced to the evaluation of the secular
determinant [15]:

’an—giSnkIZO
with
Hue = <pn | H | @r> and  Spr = {pn | pr) - (2)

Generally speaking, we can distinguish between two types of calculations:
a) Calculations that are based on empirical approximations. In this type of
calculations, the H-integrals are empirically determined. from the valence state
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ionisation energies. Examples of this type are the caleulations of WorLFsBERG and
Hermaorz [22]; BALLEAUSEN and GrAY [I]; VisTE and Gray [18]; FExskE and
SwreNY [4]; CorToxN and Haas [3].

b) Calculations in which it is tried to compute the H;-integrals from first
principles. This type of calculation offers many difficulties and until now, calcula-
tions have been performed only on ionic compounds, hence on compounds for
which it may be assumed that the central ion-ligand overlap-integral S and the
covalency factor A are so small that terms in S2 or A2 can be neglected. Examples
of this type are the calculations of SucaxNo and Swurman [16]; WarsoN and
FremMaw [20].

In the calculations described in this investigation, we have tried to use empirical
quantities as little as possible. No restrictions have been placed on the magnitude
of 8 and A.

Prineiples of the caleulation

All details of the calculation described here can be found in Ref. [13]. The
qualitative aspects of the molecular orbital theory and its applications to tetra-
hedral and octahedral complexes have been described extensively in the litera-
ture [1, 4, 13, 18, 22]. In our calculation we will use the same co-ordinate systems
and combinations of ligand orbitals as given by [4, 18].

We can now limit our discussion to the computation of the Hy- and Sy-
integrals. The Cu-functions used in this calculation are given by Ricmarpsox
et al. {10, 11] while the Cl-functions are from Warsox and FrREEMAN [19]. Through-
out the Cu-Cl distance was supposed to be 2.22 A = 4.194 a.u. [7]. The calculations
were performed with an IBM 1620 Data Processing System.

The Sjj;-integrals were first expressed in terms of the 4, and B, auxiliary
functions as given by Roormaax [12]. With the help of these expressions, a com-
puter program was easily written.

From the overlap-integrals Sy, group overlap integrals were obtained using
formulas given in Ref. [18]. It appeared that in these calculations, the ligand-
ligand overlap-integrals are of considerable magnitude and cannot be neglected.

We now first turn our attention to the computation of the Hy;-integrals. To
compute these integrals we define our one-electron Hamiltonian as follows:
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The first term is the kinetic energy of the electron. The second term is the
potential energy of the electron in the field of the nucleus of the atom « where
is the atom to which the orbital ¢; belongs and Z, is the nuclear charge of atom «.
The third term of (3) represents the Coulomb and exchange interaction of the
electron with the electrons in all other occupied orbitals belonging to the same
atom. P, is an operator which permutes the electrons 1 and 2. The fourth term
is the potential energy of the electron in the field of the nuclei of the other atoms
in the molecule; Z; is the nuclear charge of the atom f. The last term is the
Coulomb and exchange interaction of the electron with the electrons in all occupied
orbitals belonging to the atoms f.
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The first and second term of Eq. (3) lead to only one-centre one-electron inte-
grals and can be calculated straight forwardly (see RoormAAaN [12]). The third
term can be expressed in terms of the Condon and Shortley F% and G* inte-
grals [2, 6]:

FE = (Ry (1) Bayyy (2) J:—'ngl | Bty (1) By, (20

)
Gk = <-R7lili (1) anlj (2) |;J;!_i1 [Rﬂilg (2) Rn;lj (1)> .

Since our functions R,; are linear combinations of Slater orbitals #7 ¢=or  all
our F'¥ and G* integrals are of the type:

'
I = Bp, (1) By (2) !;Z—ff | B, (1) Ba, (2)) (5)
>
with
Ry (1) = Nop, 7 e
Ry, (2) = Ny, rgn—tebire,
Letting

M =m; + mg; N =ny + ny
A= a,+ ay; B= b+ by

and using simple mathematics, the following formula is easily derived:

Nu, NewyNu N, )
I = AM BN+1 PM
N+ (M—~k—1)! 1 Nr—1 -
.{( )1£M~k ) T (A4 Py J;) [(N+k)!~(Z\T~k~1)!l];1(J_.l)]-
(M+J—E-1)
g )
Above

P=A4/B
2k
J—D=JJJ—-1)....(J—2Fk).
=0
With the help of this formula FORTRAN computer programs were written
for the ¥ and G* integrals.

The fourth and fifth term of Eq. (3) give the interaction of an electron of a
certain atom in the molecule with all other atoms in the molecule. To compute
these terms we have to calculate two- and three center integrals. This is a com-
plicated operation and at any rate quite beyond the possibilities of our computer.
There are however also other approximations in the calculation (choice of atomic
orbitals, definition of the hamiltonian, ete.) and therefore an exact computation
of all integrals may be superfluous. As an acceptable approximation for the fourth
and fifth term of KEq. (3) we assumed in the calculation of the H;; integrals that
the other atoms in the molecula behave as point charges. Hence we replaced the
two terms in our one-electron Hamiltonian by

Zs
F o

(7)

1%
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. 1
The integrals (g7 (1) [Zﬁ— | ¢ (1)> that have to be calculated now, can be

expressed in terms of A4,- and Bj-integrals and a computer program can be
written.
The effective charges Z; were calculated, using shielding constants for each
electron (compare Slater’s method for shielding constants in one atom [74]):
Suppose orbital ¢; belongs to nucleus « and orbital ¢; to nucleus 8, then we
define §; (¢) as the screening of an electron in @; from nucleus 8 by an electron
in ¢;: With this definition we obtain for an electron in ¢;

Z;?:Zﬁ_%jsf OF (8)

The summation j extends over all occupied orbitals of atom 8. The shielding
constants Sy (¢) were partly calculated and partly estimated from the form and
the range of the atomic wave functions.

The procedure consists in concentrating the two electrons in “spherical shells”
between rmax and rmin. The two spherical shells shall in general intersect each

Table 1. Shielding constants in CuCli—
The shielding constants of all lower lying orbitals were supposed to be 1,00

Pi P 8; (3) 8 (1)
4s (Cu) 35 (Cl) 0,93 0,57
4s (Cu) 3p (N 0,00 0,62
4p (Cu) s (C1) 0,96 0,49
4p (Cu) 3p (1) 0,01 0,51
34 (Cu) s (C1) 0,98 0,98
34 (Cu) 3p (1) 0,95 0,97
35 (Cl) 35 (C1) 1,00 1,00
35 (Cl) 3p (O1) 0,99 1,00
3p (Cl) 3p (C1) 0,08 0,98

other. That part of the shell of electron 1 that lies outside the shell of electron 2
is considered to be completely screened (screening is 1); that part completely
inside is assumed to be not screened at all while the screening in the intersection
region is computed from. the average densities of the electrons 1 and 2 in that
region. The different contributions are then weighted for the fractional volume of
electron 1 and the results added. to give the total screening factor S, (1).

Tab. 1 gives the shielding constants used in the calculation on tetrahedral
CuCl3-. Using these data, we obtained H;-integrals for the 3d, 4s and 4p-orbitals
of Cu and for the 3s and 3p-orbitals of CL

The H;-integrals {(¢; | H | ¢;> were also approximated. To compute these
integrals exactly we would have had to compute three- and four-centre integrals
and since we were not in the position to do that, we calculated the Hy;-integrals
with the help of the formula )
Hy = — FGy VH uHj 9)

F = constant; Gy; is a group overlap-integral.
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The exactness of this formula has been studied by different authors [3,4]and in
most cases the formula gives reasonable results if one takes I to lie between 1,6
and 2,0. Following WoLFsBERG and HELMHOLZ [22], we set ¥ = 1,67 for ¢-bonding
orbitals and F = 2,00 for z-bonding orbitals.

Tteration Process

The atomic wave functions that were used in the calculation of Hy; and
H-integrals are rather dependent on the configuration to which they belong.
So the 3d-function of copper in the d®configuration differs from that in the
d'0.configuration. In our caleulation we computed the Hy- and Sy-integrals for
all intermediate configurations. Let an arbitrary configuration be given by
Cu (d19-4 B pC) C1-2 which means that there are 10— 4 electrons in the Cu-3d
orbitals, B electrons in the Cu-4s orbitals, C electrons in the Cu-4p orbitals and
5 -+ D electrons in the Cl-3p orbitals. In our case we may suppose 0 < 4, B, C,
D <1. By the interpolation procedure we obtained the H;; and Sj; integrals as
functions of 4, B, C'and D.

For the calculation of the correct molecular orbitals and the one-electron
energies we now used the following iteration process:

a) Initial values of 4, B, C and D were estimated: 4,, B,, C; and D,,.

b) The H;; and Sj-integrals belonging to 4,, B,, gy and D, were computed
and the secular determinants found in this way were evaluated giving us certain
molecular orbitals ¢}

¢) From the functions ! new values of 4, B, ¢ and D were computed:
A, By, C; and D,.

d) The process was repeated with 4,, B;, C; and D, as new initial values etc.,
until consistency in the values of 4, B, ¢ and D was reached.

The values of 4, B, C and D for which consistency was reached were supposed
to be the correct 4, B, C and D and the molecular orbitals and energies belonging
to it to be the correct molecular orbitals and the correct one-electron energies in
our approximation. In calculating 4, B, C and D from the wave functions we
could not use Mulliken’s method of dividing the overlap charge between the two
nuclei [&] since in some cases we got negative values for 4, B, € or D and this is
physically impossible. Instead we defined for a molecular orbital ¢ = Cap4 +
+ Cp @g the charges on the nuclei 4 and B as follows:

o
4=cricn

and
o
er=crion
For the evaluation of the secular determinant we used a modification of an

S.P.S. (Symbolic Programming System) computer program made by VELTKAMP
and CLEMENT [[7].

Results of the calculation on tetrahedral CuCI2~

For the ground state of tetrahedral CuCl3- we obtained the following values of
4, B, Cand D: 4 =0,541; B=10,116; C = 0,506; D = 0,730.
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The eigenvalues and eigenfunctions belonging to the computed charge distribu-
tion are listed in Tab. 2. The results prompt us to make the following remarks:
a) The relative positions of the one-electron energies belonging to the computed
charge distribution are quite different from those belonging to the ionic model

Table 2. One-electron Energies and Molecular Orbitals in Tetrahedral CuCli~

A4 1
PRV IEREEETEET
30y ‘ 0,2360 1,559 | — 0,950 | — 0,51
20 — 0,3958 0,038 0,983 | — 0,147
la, |—09075 | -0273 | 0,185 | 1,100
E gymmetr,
yImETLy ( Emo i 3d i (=)
|
2e - 0,3235 0,836 | — 0,605
le - 0,3710 0,552 0,799
T, symmetry e = — 0,3227
T, symmetr
R mo | w3 |y | 2@ | 20
‘ 1
5t, 0,1418 1,448 ! 0,086 ‘ 0,555 | — 0,377 | — 0,572
4t, —~0,3096 | — 0,057 | 0,707 J -0,39 | — 0,690 | — 0,087
3t - 0,3584 | — 0,004 0,710 0,226 0,613 0,001
2t, - 0,3712 0,016 0,064 { 0,910 | — 0,381 0,035
1, | —0917| - 0351 | —0002 | —0,156 = 0,077 | 1,164
Table 3. Hy-integrals in tetrahedral CuCl~
Symmetry 4 Orbital ‘ Tonie Model Covalent Model
4, ( Cu - 4s ~ 0,2342 ‘ ~ 0,1700
| Cl - 3po comb. - 0,3894 i ~ 0,4047
Cl — 3s comb. — 0,8454 -~ 0,8731
E Cu — 3d - 0,6104 - 0,3408
Cl — 3pz comb. - 0,3291 -~ 0,3566
T, Cl - 3pm comb. ~ 0,2022 - 0,3227
T, . Cu-4p ~ 0,0624 ) - 0,1364
Cu-—3d - 0,6091 — 0,3405
Cl — 3pm comb. ~ 0,3406 } ~ 0,3669
Cl — 3po comb. - 0,3228 ~ 0,3429
Cl - 35 comb. ~ 0,8255 | — 0,8534

(4d=1, B=C=0,D = 1). Tab. 3 gives the Hy-integrals for both cases and from
this table we see that in the ionic model the energies of the ligand 3p-electrons
are higher than the energies of the 3d-electrons of the central ion. So if we bring
together one Cu2*-ion and four Cl--ions, the charge of the filled ligand orbitals
will flow to the partly filled central ion orbitals with lower energy. At the same
time, the energy of the ligand orbitals decreases and the energy of the central ion
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orbitals increases. When self consistency is obtained the energy of the ligand
orbitals is just below that of the central ion orbitals. However, instead of Cu?+ and
Cl- we now have Cut0:92 and Cl-0.%,

b) The splitting of the d-orbitals is given in Fig. 1. The lefthand side of this
figure gives the Hy-integrals for the 3d-orbitals at the computed charge distribu-
tion; the righthand side gives the ener-
gies of the molecular orbitals that are pre-  —430-

dominantly of 3d-character. The splitting L —— —
in the Hy-integrals is only 0,00834 a.u. T—o.?z— / %
= 74 cm~1; the splitting in the mole- T~ / Y ——ée
cular orbitals is however 0,01390 a.u. § r // J/

/

=3050 em~1. In first approximation -ge}-— . _ _/
we can compare this splitting with 4
= E (2B) — E (*T,). From optical
spectra and from crystal field calculations a value of 3500 to 4000 cm~! for 4 is
expected [5].

¢} In a number of molecular orbital calculations, the concepts of bonding and
antibonding orbitals are correlated with a positive and a negative overlap popula-
tion respectively [8]. This view is founded on the fact that in most cases with a
positive overlap population, charge is concentrated between the nuclei, thus giving
a bonding effect. However, in our calculation we must apply these considerations

Fig. 1. Splitting of the d-orbitals in tetrahedral CuCl3—

By / /2s)
;N
/ \ 2
// \\ '4 /70_'7/
// N
I T T
0 7 I~ G
TN gy
; /\?5\4/5/ :” \/35457 (353p) ad
u

Fig. 2. Charge density in bonding 1a,-orbital

with some reserve. The 4p-function of Cu has its greatest density not between the
Cu- and the Cl-nuclei but on the other side of the Cl-nucleus and the same holds
to a certain extent for the 4s-function. This may be the reason that although we
find in some bonding orbitals (for instance 1@ and 1¢,) a negative overlap popula-
tion, these orbitals give a charge concentration between the nuclei, as can be seen
by plotting ? against the distance (Fig. 2).

Results of the calenlation on square planar CuCl3~
In the calculation on the ground state of square planar CuCli~, all overlap-
integrals involving functions of two opposite ligands were neglected. With the
method described above we then found for the charge distribution: 4 = 0,500;
B =0,133; C = 0,671; D = 0,699.
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So in this case we find on copper a charge of - 0,80 and on each of the ligands
— 0,70. Hence in the square planar complex there is more negative charge on the

central ion compared with the tetrahedral complex.

Table 4. One-eleciron Energies and Molecular Orbitals in Square Planar CuClj—

A t;
1g Symmetry mo 4s 3d.2 ¥ (0) ‘ )
da1g 0,4021 1,728 0,049 - 1,162 - 0,644
a1 — 03153 | — 0,045 0,970 | - 0,293 0,086
2014 - 0,3780 0,072 0,257 0,904 - 0,078
laig ’ — 0,8887 - 0,284 — 0,006 0,184 1,119
Agy symmetry e = —0,2055
Aszy symmetr,
e ST o | 4m. % ()
a2, 0,0105 1440 | — 0,784
1azu — 0,3593 0,231 0,862
B met;
19 Symmetry omo } 34,22 ¥ (@)
2b1g - 0,2997 0,914 — 0,479
1b1y - 0,3631 0,411 0,881
B1, symmetry e = —0,3078
B 1
e SYIIERY Emo 3.y % (o) %(6)
b, ~0,2730 0771 | — 0,759 | - 0,132
b2y - 0,3393 0,659 0,670 - 0,007
1b2g — 0,8306 0,004 — 0,004 0,999
E 1
7 SyTmetty Emo 3d.z, 3dy- X (7!)
2eq - 0,3044 0,787 - 0,663
leg - 0,3417 | 0,619 0,751
B, symmet;
yrmmeny | eme | dpetn | @ % () %)
dey ( 0,2694 1,624 - 0,546 ~ 0,404 — 0,801
3eu - 0,3180 - 0,011 0,935 — 0,425 — 0,067
2ex - 0,3536 0,004 0,375 0,904 — 0,030
leu — 0,9262 — 0,444 0,157 0,107 1,255

The molecular orbitals and the one-electron energies belonging to this charge
distribution are tabulated in Tab. 4. As might be expected, the splitting of the
3d-orbitals is different from that in tetrahedral CuCl3~ as can be seen from Fig. 3.
The relative splitting of the 3d-orbitals agrees with the literature (see for instance
Ref. [9] p. 24; we used a different co-ordinate system, 80 dze— ;2 and dz, have to
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be interchanged to make a satisfactory comparison possible). The maximum
splitting is equal to: E (dzy) — E (dz) = 0,0424 a.u. = 9300 em~-1.

This value is a very reasonable one for square planar complexes [5]. Fig. 4
compares the 3d-energies in tetrahedral and square planar CuClj-. The actual

- d R
S txy e
-028| / —~028 Y
/ /
/ /
b / . :
S 3 Sy
> | d /
S-030 / ///_ .Z‘é—yz 3_0}50 I / — e —
Q o —_— ——d d =~ /., d 7
I ////ﬁ/ xz *Yyz // ‘Z’Z,/g/’Zf/—— -
i _—_—::// // L ——— J—— —_ T
Pt iy
-0~ — _ T T
—— -032 |- -
4 _ LT
Tig. 8 Fig. 4

Fig. 3. Splitting of the d-orbitals in square planar CuCiz~
Fig. 4. Tetrahedral and square planar CuCli~

structure of CuCli- is intermediate between the tetrahedral and the square planar
structures.

Results of the caleulations on Cu in a octahedral CI~ environment
A calculation on octahedral CuClg- yielded the following results: 4 = 0,926;
B =10,515; ¢ = 0,466; D = 0,824.
Tab. 5 contains one-electron energies and the molecular orbitals of CuClg.
As can be seen from the table, the one-electron energies of CuClg— are surprisingly

Table 5. One-electron Energies and Molecular Orbitals in Octahedral CuCli~

A1y symmetr
1g 8% y Emo 4s X (G) X (8)
3a1y 0,5090 2,122 - 1,682 - 0,837
2014 - 0,1266 0,383 0,719 - 0,214
1a1g - 0,5907 - 0,258 0,109 1,117
B, symmetry
Emo 3d % (0) x{(s)
3e, - 0,0548 0,997 - 0,274 - 0,051
2eq — 0,0855 0,154 0,972 0,425
ley — 0,5515 - 0,043 0,038 1,004
Ty e = —0,0619
T4 symmetry
v €mo 4p % () % (o) z(8)
4t1y 0,3928 1,619 — 0,477 - 0,453 - 0,799
3t1u - 0,0699 - 0,137 0,984 - 0,516 0,004
21y - 0,1039 - 0,188 0,464 0,905 0,056
11w =057 - 0,194 0,037 0,076 1,104
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Table 5 (Continuation)

T. met;
20 SYMIMELLY emo 3d % ()
2ay — 0,0582 0,975 | - 0,296
sy — 0,0756 0,232 0,057

T2, symmetry g = — 0,0646

high with respect to the one-electron emergies of CuCli~, thus indicating that
CuCli- is very unstable. Also the splitting of the 3d-orbitals is rather small (Fig. 5).
There is no possibility of experimental verification of this value, since no CuClg—
complex is known. There is,however, a situation in which Cu is surrounded by six
Cl-ligands, namely in a CuCl,-crystal. In this crystal Cu is found in a distorted
octahedron of Cl with 4 Cl ligands at a distance of 2,30 A and 2 Cl ligands at
2,95 A [21]. To get an impression of the stability of Cu in this type of surrounding,
we have made a very approximate calcu-

lation on Cu in a CuCl,-crystal. As a model f 5
an idealised cubic structure of CuCl, was
used, taking 2,22 A (as in CuCli~) for the ya
r
T—U,Oﬁ-y - dZ'Z-yZ di{ o /
~o05e //
S - -
~ e
“p0ss- — ﬁ”ﬁf Yoz Oy
4\./_—""—_—‘
= //
- o=y
~0,060 o=l
Fig. 5 Fig. 6

Fig. 5. Splitting of the d-orbitals in CuCl{™
Fig. 6. Simplified model of CuCly-crystal

smallest Cu-Cl distance. See Fig. 6. From this CuCl,-crystal we took a CuCl-
unit and to this unit we applied a molecular orbital calculation. The electrons
of the CuClg-unit are not only affected by atoms of this unit, but also by atoms
situated outside the CuClg-unit.

This influence manifests itself in the Hy-integrals and via Eq. (9) subsequently
in the Hy-integrals. Every atom in the CuClg-unit is now affected by the other
atoms of the crystal owing to the potential field of these atoms. However, the
combined influence of Cu- and Cl-ions is supposed to cancel when the distance to
the central Cu-atom surpasses a radius  that is considered to be small enough to
limit the actual computation to only a few surrounding atoms. To make the
influence of the more distant atoms cancel, the group selected should be electro-
neutral. For the central Cu-atom for instance it suffices to take into account the
6 Cl-atoms at 7, already considered in the CuClg-unit and in addition 6 Cu-atoms
at 7, /2 and 8 Cl-atoms at 7, /3. For a Cl-atom. of the CuClg-unit we select 3 Cu-
atoms at 7,, 4 Cu-atoms at r, /3, 12 Cl-atoms at 7, J/2 and one Cl-atom at 2r,.
Their “field”’ is calculated similarly as given by Eq. (7) and (8).

The following charge distribution was thus obtained: 4 = 0,768; B = 0,445;
C=1,242; D = 0,041.
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This results in a charge of + 0,08 on Cu and — 0,04 on Cl. The charge dif-
ferences in the CuCl,-crystal seem to be very small. However, these effective
charges do not give us a good insight into the amount of charge that we can find
on different sites in the complex. As stated above, the 4s- and 4p-orbitals of Cu

Table 6. Charge Distributions in the Copper-chloride Complex

Complex Effective charge S%a;zzi}bu(‘iifge
Cu Cu-site ' Cl-site
Tetrahedral CuClZ— ............ 0,92 - 0,73 1,54 ‘ - 0,89
Square Planar CuCli_ ......... 0,80 - 0,70 1,50 [ - 0,88
Octahedral CuCli— ............ 0,94 ‘ — 0,82 1,93 i - 0,99
CuClg-unit of CuCly-crystal ..... 0,08 - 0,04 1,77 ‘ - 0,88

Table 7. One-electron Energies and Molecular Orbitals in a CuClg-unit of o CuCly-crystal

A1 symmetr
105y v emo 4s x (0) % ()
3a1g 4,603 1,911 — 1,404 - 1,056
2014 Lo-1,817 0,106 0,727 - 0,725
1aiy L— 2,261 0,348 0,346 0,564
By symmetr
75y Y émo 3d 2 () 7 (8)
3eg - 1,260 0,940 - 0,471 - 0,211
2eq - 1,626 0,363 0,886 0,072
1eg - 1,963 0,087 - 0,107 0,980
T4 symmetry e = — 1,546
T symmetry
&mo 4p Z (@) % (o) x(8)
4t1y 1,468 1,477 - 0,672 - 0,434 -1,019
3t10 — 1,548 0,008 0,758 - 0,720 - 0,181
1y - 1,795 0,081 0,522 0,653 — 0,487
1t1u — 2,176 0,352 0,208 0,104 0,664
Tae symmetry
o SYTMOH emo 34 ¥ (@)
2t2q - 1,324 0,977 - 0,288
1tag | —1,742 0,223 0,960

T2 symmetry e = — 1,589

have their greatest density in the neighbourhood of the Cl:nucleus and so we can
get a better insight into the spatial charge distribution if we associate the 4s- and
4p-electrons with the Cl-charge. Tab. 6 shows clearly that we then obtain a some-
what different impression of the charge distribution. This, however, also indicates
that the 4s- and 4p-orbitals are not very suitable in describing the bonding
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between Cu and Cl. The molecular orbitals and one-electron energies of a CuClg-
unit in a CuCl,-crystal are given in Tab. 7. Fig. 7 gives the splitting of the 3d-
orbitals. We now find a splitting of 14300 cm—'. Experimentally, the splitting is

found to be 8000 — 10000 cm~! but in

r Ayl 8 dy2 . X .
-5k ‘7.7—3/ = view of the crude approximations we used
L / in the calculation on the CuCl,-crystal,
1—,25— // the result is satisfactory.
- / Although the calculations performed
~ N
$-7,301~ / here involved many approximations the
§ B // i de a results are at least qualitatively reason-
-1 zy ¥z ¥ ably good. To discuss the results quanti-
i // /_ tatively, we must compare them with
hHT I data that can be obtained from optical
R __// and magnetic spectra. This is reserved

Fig. 7. Splitting of the d-orbitals in a CuCl-crystal for a following paper.
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